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Abstract

We prove that a Sasakian 3-manifold admitting a non-trivial solution to the Einstein–Dirac equa-
tion has necessarily constant scalar curvature. In the case when this scalar curvature is non-zero,
their classification follows then from a result by Th. Friedrich and E.C. Kim. We also prove that a
scalar-flat Sasakian 3-manifold admits no local Einstein spinors. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

On a (pseudo-)Riemannian spin manifold(M, g), a solution of the Einstein–Dirac equa-
tion is an eigenspinorψ of the Dirac operator, i.e.

Dψ = λψ, (1)

for a real constantλ, satisfying the Einstein equation

Ric− 1
2Sg = ±1

4Tψ, (2)

whereRic andS are the Ricci and the scalar curvature of the manifold, respectively, and
Tψ is theenergy–momentum tensorgiven by the spinorψ by the formula

Tψ(X, Y ) := (Y · ∇Xψ +X · ∇Yψ,ψ) ∀X, Y ∈ TM, (3)
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where∇ is the Levi–Civita-spin connection, the dot stands for Clifford multiplication, and
(·, ·) is thereal partof the Hermitian scalar product on the spin bundleΣ .

The system of Eqs. (1) and (2), henceforth called the Einstein–Dirac equation, has been
considered in physics for a long time in dimension 4 and Lorentzian signature, as describing
the interaction of a particle of spin12 with the gravitation field [2]. As it has recently been
shown by Friedrich and Kim [4], the above equations arise as the Euler–Lagrange equations
characterizing the extrema of the functional

Wε(g,ψ) :=
∫
M

(Sg + ε(λ(ψ,ψ)− (Dgψ,ψ)))Vg, (4)

whereε = ±1 andVg is the volume form of the manifold. The coupling of Eqs. (1) and
(2) arises naturally, as the differential identity (coming from the second Bianchi identity)
satisfied by the Einstein tensorRic− 1

2Sg is automatically satisfied by an energy–momentum
tensor of type (3) ifψ is an eigenspinor of the Dirac operator [4].

In the above-cited paper, Th. Friedrich and E.C. Kim constructed families of solutions
of (1) and (2) — also called Einstein spinors — and one of their methods relies on the
introduction of theweak Killingequation (for short WK):

∇Yψ = n

2(n− 1)S
dS(Y )ψ + 2λ

(n− 2)S
Ric(Y ) · ψ

− λ

n− 2
Y · ψ + 1

2(n− 1)S
Y · dS · ψ, (5)

wheren is the dimension of the manifold, andλ a real constant, also called the WKnumber
of the spinorψ . They show that any WK spinor with WK numberλ yields (by multiplication
with a constant) an Einstein spinor, of eigenvalueλ for the Dirac operator. They obtain,
for all odd n, examples ofSasakian manifoldswith constant scalar curvature admitting
non-trivial WK spinors, therefore also Einstein spinors.

Moreover, in dimensionn = 3, the existence of a non-trivial solution to the Einstein–Dirac
equation is equivalent, on the open set whereS does not vanish, to the existence of a
non-trivial WK spinor. It is shown in [4] that, up to a local isometry, there are exactly
three Sasakian metrics (see below) on 3-manifolds with constant scalar curvature (one of
which is the round sphereS3) admitting non-trivial such spinors. The aim of this paper is to
investigate the case of a general Sasakian 3-manifold, we establish the following theorem.

Theorem 1. Let(M, g) be a simply-connected three-dimensional Sasakian manifold. Then
it admits non-trivial Einstein spinorsψ with eigenvalueλ for the Dirac operator if and only
if the scalar curvature S is constant and equal to one of the following values:
1. S = 6,and M is locally isometric to the round3-sphere,ψ is a Killing spinor andλ = 3

2;
2. S = 1 + √

5, λ = 1
2(2 + √

5), andψ is not a Killing spinor;

3. S = 1 − √
5, λ = 1

2(2 − √
5), andψ is not a Killing spinor.

The examples (1)–(3) are due to Friedrich and Kim [4]. The last two examples are
part of a 1-parameter (modulo homothety) family of metrics on 3-manifolds with constant
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eigenvalues of the Ricci tensor, which, as shown by Friedrich [3], are the only ones that
admit non-trivial Einstein spinors, and do not admit Killing spinors.

The proof of the theorem is divided in two steps: first (Section 3) we prove (using the WK
equation (5)) that if the scalar curvature is non-vanishing and the manifold admits locally
an Einstein spinor, then the scalar curvature is constant; in the second step (Section 4) we
prove that if the scalar curvature of a Sasakian 3-manifold is constantly zero, then there is
no Einstein spinor (note that the WK equation is not defined in this case).

2. Spinors on Sasakian 3-manifolds

Consider theClifford algebrabundleCl(M) of a Riemannian oriented 3-manifoldM,
defined as the quotient of the tensor algebra⊗M by the bilateral ideal generated by the
elements

X ⊗ Y − Y ⊗X + 2g(X, Y ).

ThenCl(M) is isomorphic, as a vector bundle, to the exterior algebra bundleΛ(M), there-
fore its fiber has dimension 8. It is a standard fact [5] thatCl(M)x ⊗ C is isomorphic, as
a complex algebra, to the direct sumEnd(Σx) ⊕ End(Σ ′

x) for Σx,Σ ′
x two-dimensional

complex vector spaces. These two fundamental complex representations ofCl(M)x , dis-
tinguished by the action (equal to the identity onΣx and to minus the identity onΣ ′

x)
of the central elementV := e1 · e2 · e3 (for e1, e2, e3 an oriented orthonormal basis of
TxM) of square 1, are both isomorphic to the fundamental representation of the group
Spin(M)x ⊂ Cl(M)x , which is the universal covering ofSO(M)x , therefore isomorphic to
SU(2).

Convention. We will consider, in this paper, the spinor bundleΣ , consisting of the fun-
damental representations ofCl(M) on which thevolume elementV acts like the identity
(consideration of the other spinor bundle, on which the element above acts as minus the
identity, leads to an equivalent situation; only that the WK numberλ arising in the WK
equation (5) has to be replaced by its opposite).

In all generality, the spinor bundleΣ , as well as theSpin(3) ' SU(2) principal bun-
dle Spin(M), double covering the frame bundleSO(M), can only be considered locally.
However, as any orientable 3-manifold is parallelizable, its frame bundle is trivial and the
Spin(M) bundle can be globally constructed: the manifold isspin. Actually, the restriction
to spin manifolds is not essential for our purposes, as we consider local solutions of the
Einstein–Dirac equation.

As TM ⊂ Cl(M), it acts, byClifford multiplication, denoted by a dot, onΣ ; this action
preserves the complex structure ofΣ ' C2 (which can be seen as the structure induced by
the left multiplication by the quaternioni ∈ H on H ' C2), andX · ψ for X ∈ TxM '
Im(H) andψ ∈ Σ ' H can be seen to be isomorphic to the right multiplication with
the quaternionX (if we had takenΣ ′ for the spinor bundle, it would have been the right
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multiplication by−X); the orientation ofTxM ' Im(H) is supposed to be induced by the
oriented basisi, j, k ∈ H.

Let us now consider the case where(M, g) is aSasakian manifold.

Definition 1. A Sasakian structureon an oriented 3-manifoldM is given by a unitary
Killing vector fieldT , such thatJ := ∇T ∈ End(T ⊥) is a complex structure on this rank
2 subbundle (i.e., its square is equal to minus the identity). The orientation compatibility
is, by definition, such thatT ,X, JX is an oriented orthonormal basis ofTM for any unitary
vectorX ∈ T ⊥.

Remark. The fact thatJX ⊥ X follows from the fact thatT is Killing, and the fact that
∇T can be restricted toT ⊥ is due to the additional fact thatT is unitary.

We notice that the integral curves ofT are geodesics, and the flow ofT preserves the
complex structure onQ := T ⊥, thus a Sasakian metric on a 3-manifold is locally isometric
to a real line bundle over a Riemann surface with the metric given by a metric on the basisB

(equivalently by its Kähler formωB ), one on the fiber, and a connection on this line bundle
such that its curvature is 2iωB [1]. This latter condition immediately follows from

∇XT = JX,

as do the following ones:

[JX, T ] = J [X, T ] ∈ Q, (6)

RT,X = −T ∧X, (7)

RT,JX = −T ∧ JX, (8)

RX,JX = −1
2(S − 4)X ∧ JX, (9)

dS(T ) = 0, (10)

Ric =

 2 0 0

0 1
2S − 1 0

0 0 1
2S − 1


 , (11)

where the Ricci tensor has been realized as a 3× 3 matrix using the positive orthonormal
basis{T ,X, JX}, andS denotes the scalar curvature.

3. Proof of the theorem — the caseS 6= 0S 6= 0S 6= 0

Let (M3, g, T ) be a Sasakian 3-manifold, and endow it with the orientation given by
the basisT ,X, JX for 0 6= X ∈ T ⊥, andJX := ∇XT . ThenM is spin, and suppose the
Einstein–Dirac equation (1) and (2) admits a non-trivial solutionψ ∈ C∞(Σ). Consider
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first the open set ofM where the scalar curvatureS does not vanish. It follows then from
[4] that, on this open set,ψ must be a solution of the WK equation (5):

∇Yψ = 3

4S
dS(Y )ψ + 2λ

S
Ric(Y ) · ψ − λY · ψ + 1

4S
Y · dS · ψ. (12)

We can choose a unitary vector fieldX ⊥ T on a neighborhood of a pointx0 ∈ M, such
that:

[X, T ] = 0 everywhere, (13)

(∇XJX)x0 = −T . (14)

We rewrite the WK equation for the special casesY = T andY = X, replacing dS by
dS(X)X + dS(JX)JX (recall that dS(T ) = 0):

∇T ψ = (4 − S)λ

S
T · ψ + dS(JX)

4S
X · ψ − dS(X)

4S
JX · ψ, (15)

∇Xψ = dS(X)

2S
ψ − dS(JX)

4S
T · ψ − 2λ

S
X · ψ. (16)

We want to prove that the existence of a non-trivial local solution of this equation implies
that the scalar curvatureS is constant.

Suppose thatψ is such a solution, then it is non-vanishing [4] and thus{ψ, T ·ψ,X·ψ, JX·
ψ} is an orthogonal basis forΣ . We are going to computeRT,X ·ψ using the WK equations
for ψ (15), and compare this with the known value of it (7)–(11), i.e.−(T ∧ X) · ψ =
−1

2JX · ψ . We will develop it on the above-mentioned basis ofΣ , and will actually be
concerned only with the coefficient ofT · ψ . We defineη : Σ → R such thatη(ψ) =
η(X ·ψ) = η(JX·ψ) = 0 andη(T ·ψ) = 1, then the coefficient we are looking to identify
at ∇T∇Xψ and∇X∇T ψ is η(∇T∇Xψ), respectively,η(∇X∇T ψ) (they need to be equal
becauseRT,X — see (7)–(11) — acts onψ as (a constant times) the Clifford multiplication
by JX).

Let us write Eqs. (15) and (16) as

∇T ψ = Aψ := aψ + aT T · ψ + aXX · ψ + aJXJX · ψ, (17)

∇Xψ = Bψ := bψ + bT T · ψ + bXX · ψ + bJXJX · ψ. (18)

As we have thatbT is constant alongT ,

η(∇T∇Xψ) = η(BAψ) = baT + bT a − bXaJX + bJXaX,

and, asa = 0 andbJX = 0, we get

η(∇T∇Xψ) = baT − bXaJX. (19)

On the other hand, we have

η(∇X∇T ψ) = daT (X)− aJX + η(ABψ),
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where the first term on the r.h.s. comes from the derivation of the coefficient ofT ·ψ in ∇T ψ ,
and the second appears because, at the given pointx0 where we make the computations,
∇XJX = −T (and∇XX = 0). We get then

η(∇X∇T ψ) = baT + bXaJX + daT (X)− aJX. (20)

By settingη(RT,X · ψ) = 0, from (19) and (20) we get

2bXaJX + daT (X)− aJX = 0,

or, equivalently,

(4λ− 16λ+ S)
dS(X)

4S2
= 0. (21)

We could have started with another vectorX ∈ T ⊥, and in any other pointx0, so the above
equation should hold everywhere, and for any vectorX orthogonal toT . If we suppose that
S is not constant, then on an open set, we have dS 6= 0, thus we can find a vector fieldX
such that, on an open set, we have dS(X) 6= 0. From (21), we get then that 12λ− S = 0 on
an open set, thusS is constant there, contradiction.

It follows then thatS is constant everywhere, it is non-zero, thus either it is constant and
non-zero, or it is identically zero. In the first case, it has been established by Th. Friedrich
and E.C. Kim that only the possibilities listed above in the theorem exist. In the second
case, from the Einstein–Dirac equation, it follows [4] that

S = ∓λ|ψ |2,
henceλ = 0 (asψ is supposed to be non-trivial).

Thus, any three-dimensional Sasakian manifold with non-zero scalar curvature, admitting
a non-trivial solution to the WK equation, has constant scalar curvature.

4. Proof of the theorem — caseS = 0S = 0S = 0

Let (M, g, T ) be, as in Section 3, a Sasakian 3-manifold, and suppose in addition that
its scalar curvature,S, is identically zero. All such manifolds are locally isometric, and any
compact example is, up to a finite covering,S3 equipped with a Berger metric, such that the
metric on the fibers of the Hopf fibrationS3 → CP

1 bear the usual metric (i.e. are circles of
length 2π ), and are orthogonal to the horizontal spaces (consisting in the canonical contact
structure onS3), on which the metric comes from a constantK = 1

2 curvature metric on
CP

1 (the round metric onS3 is induced by a constantK = 2 curvature metric onCP1).
Let ψ be a solution of the Einstein–Dirac equation (1) and (2), if we suppose it is

non-trivial, then it does not vanish on an open set, to which we restrict ourselves from now
on. We can thus writeψ = ef φ, wheref is a real-valued function andφ a unitary spinor.
The Einstein–Dirac equations are then equivalent to

Dφ + df · φ = 0, (22)

(X · ∇Y φ + Y · ∇Xφ, φ) = ±4 e−2fRic(X, Y ) ∀X, Y ∈ TM. (23)
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If we denote byA,B,C a positive orthonormal basis ofTM, by developing the first equation
above, and by Clifford-multiplying it byC, we get

(A · ∇Bφ − B · ∇Aφ, φ) = df (C), (24)

from which, using the fact thatφ is unitary, and (23), we obtain the following system
of equations (the remaining two are obtained by circular permutations of the one below),
which are linear forφ, and one can easily check that they are equivalent to the Einstein–Dirac
equations:

∇Aφ = ∓2 e−2fRic(A,A)A · φ − 1
2 df (C)B · φ + 1

2 df (B)C · φ.

We specialize for the basisT ,X, JXand we get

∇T φ = ∓4 e−2f T · φ + 1
2 df (JX)X · φ − 1

2 df (X)JX · φ,
∇Xφ = −1

2 df (JX)T · φ ± 2 e−2f X · φ + 1
2 df (T )JX · φ,

∇JXφ = +1
2 df (X)T · φ − 1

2 df (T )X · φ ± 2 e−2f JX · φ. (25)

Soφ satisfies to a linear first order PDE, and can be geometrically interpreted as a parallel
section of the spinor bundle for a certain linear connection, defined by the equations above.
The only local obstruction to the existence of such a section is thus contained in the curvature
of this connection, or, equivalently, such a sectionφ exists if and only if the expressions
of the type∇A∇Bφ − ∇B∇Aφ − ∇[A,B]φ, computed using Eq. (25), coincide with the
known values of the curvatureRA,Bφ. We get, after similar computations as in Section 3,
the following expressions for the curvature terms:

RT,Xφ = [−1
2 d2f (T , JX)∓ 6 e−2f df (X)+ 1

2 df (T )df (JX)]T · φ
+[−1

2 d2f (X, JX)+ 1
2 df (X)df (JX)]X · φ + [ 1

2 d2f (T , T )

+1
2 d2f (X,X)± 6 e−2f + 1

2 df (JX)2 − 16 e−4f ]JX · φ,
RX,JXφ = [ 1

2 d2f (X,X)+ 1
2 d2f (JX, JX)∓ 12 e−2f + 8 e−4f + 1

2 df (T )2]T · φ
+[−1

2 d2f (T ,X)+ 1
2 df (T )df (X)± 6 e−2f df (JX)]X · φ

+[−1
2 d2f (T , JX)∓ 6 e−2f df (X)+ 1

2 df (T )df (JX)]JX · φ,
RJX,T φ = [−1

2 d2f (T ,X)+1
2 df (T )df (X)± 6 e−2f df (JX)]T · φ + [ 1

2 d2f (T , T )

+1
2 d2f (JX, JX)± 6 e−2f − 16 e−4f + 1

2 df (X)2]X · φ
+[−1

2 d2f (X, JX)+ 1
2 df (X)df (JX)]X · φ. (26)

We have denoted by d2f the Hessian off , d2f (X, Y ) := X · (Y · f ) − (∇XY) · f . This
leads to a system of second order equations for the functionf , if we replace df , each time
it appears with the (closed) 1-formθ , we get, from (26), the following equations forθ :

∇T θ(X) = ∇Xθ(T ) = ±12 e−2f θ(JX)+ θ(T )θ(X), (27)

∇T θ(JX) = ∇JXθ(T ) = ∓12 e−2f θ(X)+ θ(T )θ(JX), (28)
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∇Xθ(JX) = ∇JXθ(X) = θ(X)θ(JX), (29)

∇T θ(T ) = ∓24 e−2f + 40 e−4f + 1
2[θ(T )2 − θ(X)2 − θ(JX)2] − 2, (30)

∇Xθ(X) = ±12 e−2f − 8 e−4f + 1
2[−θ(T )2 + θ(X)2 − θ(JX)2] + 1, (31)

∇JXθ(JX) = ±12 e−2f − 8 e−4f + 1
2[−θ(T )2 − θ(X)2 + θ(JX)2] + 1. (32)

We have two cases: either df = θ is identically zero, and then the last three equations
above lead to a contradiction, or we can restrict ourselves to an open set where it does not
vanish, and then we compare again the curvature termsRA,B coming from Eqs. (27)–(30)
with the known values (7)–(11).

We compute∇T∇Xθ(T ) = T · (∇Xθ(T )) (as ∇T T = 0), then∇X∇T θ(T ) = X ·
(∇T θ(T )) − ∇JXθ(T ) (recall that∇XT = JX) from the equations above (and replace df

by θ ), we get

RT,Xθ(T ) = (∓84 e−2f + 48 e−4f − 1)θ(X)∓ e−2f θ(T )θ(JX),

as it has to be identically equal to a constant timesθ(X) (see (7)–(11)), it follows thatf is
a constant, or equivalently,θ = 0. This ends the proof of the theorem.
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